
The Ten Commandments
of Object-Oriented Code

Brandon Savage

Basic precepts

Rules for “right living.”

The Ten Commandments
I. Thou shalt invert thy

dependencies.

II. Thou shalt make substitutable
objects.

III. Thou shalt not change the
interface.

IV. Thou shalt have small
interfaces.

V. Thou shalt give objects one
reason to change.

VI. Thou shalt use exceptions.

VII.Thou shalt use existing design
patterns.

VIII.Thou shalt decouple thy
objects

IX. Thou shalt use composition
over inheritance.

X. Thou shalt use good sense and
reasonable judgement.

I. Thou shalt invert thy
dependencies.

SOLID

SOLID

The dependency inversion principle states
that high-level modules should not depend on

low-level modules. Both should depend on
abstractions.

Also, abstractions should not depend on
details; details should depend on abstractions.

Dependency Injection
<?php

class User_Controller
{
 public function __construct(Memcache $memcache)
 {
 $this->memcache = $memcache;
 }

 public function getUserContacts()
 {
 if ($contacts = $memcache->get('user_contacts')) {
 return $contacts;
 }
 }
}

Dependency Inversion
<?php

class User_Controller
{
 public function __construct(CacheInterface $cache)
 {
 $this->cache = $cache;
 }

 public function getUserContacts()
 {
 if ($contacts = $cache->get('user_contacts')) {
 return $contacts;
 }
 }
}

Dependency inversion
relies on the abstraction

(interface).

II. Thou shalt make
substitutable objects.

SOLID

The Liskov substitution principle states that
objects in a program should be replaceable

with instances of their subtypes without altering
the correctness of the program.

E.g. if A is a type of D, then A can replace
instances of D.

Objects implementing an
interface can easily be

substituted for one another.

Design by contract.

A Contract
<?php

interface Cache {

 public function get($key);

 public function set($key, $value);

 public function delete($key);

 // Purge the whole cache
 public function purge();

}

Substitution

<?php

class Controller
{
 public function __construct(Cache $cache)
 {
 $this->cache = $cache;
 }
}

$controller = new Controller(new File());

$controller2 = new Controller(new APC());

III. Thou shalt not
change the interface.

SOLID

Extending the Interface

<?php

class MemcacheCache implements Cache
{
 // all the other methods

 public function reconnect()
 {
 $this->memcache->connect($this->host, $this->port);
 }
}

LSP Breaks
<?php

class User_Controller
{
 public function __construct(Cache $cache)
 {
 $this->cache = $cache;
 }

 public function getUserContacts()
 {
 $cache->reconnect();
 if ($contacts = $cache->get('user_contacts')) {
 return $contacts;
 }
 }
}

Software entities (classes, modules, functions,
etc.) should be open for extension, but closed

for modification.

Two kinds of open/
closed principle

Meyer’s Open/Closed
Principle

Classes are open for extension
through inheritance, but closed

to internal modification.

Polymorphic Open/
Closed Principle

Once defined, the interface
cannot be changed (but

the internals can)

“Interface” refers to the
publicly visible methods.

While the original interface should
be honored, implementation is up

to the developer.

The interface should
not be modified.

When modifying the
interface, you change an

object’s type.

The return value is
part of the interface.

Return Type Declaration
<?php

interface Cache {

 public function get($key): string;

 public function set($key, $value): bool;

 public function delete($key): bool;

 // Purge the whole cache
 public function purge(): bool;

}

IV. Thou shalt have
small interfaces.

SOLID

The interface segregation principle states that
no object should be forced to depend upon or

implement methods it does not use.

Smaller interfaces are better.

Small Interfaces

<?php

interface Countable
{
 public function count();
}

Small Interfaces
<?php

interface Iterator extends Traversable
{
 public function current();

 public function key();

 public function next();

 public function rewind();

 public function valid();
}

Small Interfaces
<?php

class ArrayClass implements Iterator, Countable
{
 public $collection = [];

 public function count() { return count($this->collection); }

 public function current() {
 return current($this->collection); }

 public function key() { return key($this->collection); }

 public function next() { return next($this->collection); }

 public function rewind() { reset($this->collection); }

 public function valid() { return (bool) $this->current(); }
}

Objects can have
more than one type!

Object Types
<?php

class ArrayClass implements Iterator, Countable
{
 public $collection = [];

 public function count() { return count($this->collection); }

 public function current() {
 return current($this->collection); }

 public function key() { return key($this->collection); }

 public function next() { return next($this->collection); }

 public function rewind() { reset($this->collection); }

 public function valid() { return (bool) $this->current(); }
}

Small interfaces help us
keep objects discrete
and single-focused.

V. Thou shalt give objects
one reason to change.

SOLID

The single responsibility principle states that
every class should have a single responsibility

and that responsibility should be entirely
encapsulated by that class. All its services

should be narrowly aligned with that
responsibility.

One class, one job.

One class, one job.

“A single reason to
change.” ~ Robert Martin

- Robert Martin

Gather together the things that change for the
same reasons. Separate those things that

change for different reasons.

…entirely
encapsulated…

Encapsulate logic together
that gives an object reason

to change state.

Separate logic out that
changes for different

reasons.

VI. Thou shalt use
exceptions.

Exceptions are
objects.

Exceptions are objects
<?php

$object = new Exception;

var_dump($object);

//
object(Exception)[1]
 protected 'message' => string '' (length=0)
 private 'string' => string '' (length=0)
 protected 'code' => int 0
 protected 'file' => string '/Users/brandon/Sites/test.php' (length=29)
 protected 'line' => int 3
 private 'trace' =>
 array (size=0)
 empty
 private 'previous' => null

Common Error Handling
Code

<?php

function addNumbers($a, $b)
{
 if (! $a || ! $b) {
 return null;
 }

 return $a + $b;
}

Common Error Handling
Code

<?php

function addNumbers($a, $b)
{
 if (! $a || ! $b) {
 return null;
 }

 return $a + $b;
}

We expect a string OR
“null”.

It’s hard to anticipate the
result when we can get

two return types.

Common Error Handling
Code

<?php

function addNumbers($a, $b)
{
 if (! $a || ! $b) {
 throw new \InvalidArgumentException;
 }

 return $a + $b;
}

Common Error Handling
Code

<?php

function addNumbers($a, $b)
{
 if (! $a || ! $b) {
 throw new \InvalidArgumentException;
 }

 return $a + $b;
}

Return empty
collections.

Return Empty Collections
<?php

function searchRecords($key)
{
 $collection = new Collection;

 $records = $this->recordSearch($key);

 foreach ($records as $record) {
 $collection->add(new Record($record));
 }

 return $collection;
}

Exceptions are
exceptional.

VII. Thou shalt use
existing design patterns.

What is a design
pattern?

A design pattern is a general reusable solution
to a commonly occurring problem within a

given context in software design.

What’s so hard
about that?

…generally reusable
solution…

…commonly occurring
problem…

The general nature and common
occurrence of these problems
means they’re solved already!

Don’t reinvent the
wheel.

NIH

VIII. Thou shalt
decouple thy objects.

Objects that talk to many
other objects are tightly

coupled.

Cohesion

Highly cohesive systems are strongly related
to one another in function and behavior. High

cohesion often leads to loose coupling of
modules and systems.

How do we encourage
loose coupling?

Law of Demeter

The Law of Demeter (LoD) states that objects
should have limited knowledge. Specifically,

they should have limited knowledge about other
units, only talk to its friends, not strangers, and

only talk to its immediate friends.

Limited knowledge

Unit Knowledge

<?php

class MyController
{
 public function __construct(
 Memcache $memcacheConnection
) {
 $this->cache =
 new Memcache_Cache($memcacheConnection);
 }
}

Only Close Friends

<?php

class MyController
{
 public function someMethod()
 {
 $this->userObject
 ->userProperties
 ->userPermissions
 ->userAllowed();
 }
}

Talk only to close
friends.

Formal Law of Demeter

• The Object itself.

• The method’s parameters.

• Any objects created/instantiated by the method.

• The Object’s component objects.

From Wikipedia

IX. Thou shalt use
composition over

inheritance.

Smaller interfaces are
better.

Polymorphism is
preferable.

Polymorphism is the principle of a single
interface being adaptable to several different

entities without being changed.

Inheritance makes
objects harder to reuse.

final

Classes should be closely
related to each other
(even in inheritance).

X. Thou shalt use good
sense and reasonable

judgement.

These rules aren’t carved
in stone! (Are they?)

They’re more like,
“guidelines,” anyway.

Following these
guidelines will get you far.

Knowing when to break
them will get you the rest

of the way.

Questions?

Brandon Savage
brandon@brandonsavage.net
@brandonsavage on Twitter

mailto:brandon@brandonsavage.net

